[cairo-commit] cairo/src cairo_pen.c,1.18,1.19

Carl Worth commit at pdx.freedesktop.org
Tue Oct 12 14:09:39 PDT 2004


Committed by: cworth

Update of /cvs/cairo/cairo/src
In directory gabe:/tmp/cvs-serv8321/src

Modified Files:
	cairo_pen.c 
Log Message:

* src/cairo_pen.c: Fix a few typos in pen vertex math description.

Index: cairo_pen.c
===================================================================
RCS file: /cvs/cairo/cairo/src/cairo_pen.c,v
retrieving revision 1.18
retrieving revision 1.19
diff -u -d -r1.18 -r1.19
--- cairo_pen.c	12 Oct 2004 19:29:30 -0000	1.18
+++ cairo_pen.c	12 Oct 2004 21:09:37 -0000	1.19
@@ -231,7 +231,7 @@
 
 Thus the maximum value is
 
-     MAX[a*cos(t) + b*sin(t)] = (a*a + b*b)/sqrt(a^2 + b^2)
+     MAX[a*cos(t) + b*sin(t)] = (a^2 + b^2)/sqrt(a^2 + b^2)
                                  = sqrt(a^2 + b^2)
 
 
@@ -253,7 +253,7 @@
 Thus
 
      r^2(t) = (a*cos(t) + b*sin(t))^2 + (c*cos(t) + d*sin(t))^2
-            = (a^2 + c^2)*cos(t) + (b^2 + d^2)*sin(t) 
+            = (a^2 + c^2)*cos^2(t) + (b^2 + d^2)*sin^2(t) 
                + 2*(a*b + c*d)*cos(t)*sin(t) 
 
 Now apply the double angle formulae (A) to (C) from above:
@@ -333,7 +333,7 @@
 
 Find the extremum by differentiation wrt t and setting that to zero
 
-∂(E²)/∂(t) = (1-cos(d))² (M² - m²) (-2 cos(t) sin(t))
+∂(E²)/∂(t) = (1-cos(∆))² (M² - m²) (-2 cos(t) sin(t))
 
          0 = 2 cos (t) sin (t)
 	 0 = sin (2t)




More information about the cairo-commit mailing list