[cairo-commit] cairo/src cairo_pen.c,1.18,1.19
Carl Worth
commit at pdx.freedesktop.org
Tue Oct 12 14:09:39 PDT 2004
Committed by: cworth
Update of /cvs/cairo/cairo/src
In directory gabe:/tmp/cvs-serv8321/src
Modified Files:
cairo_pen.c
Log Message:
* src/cairo_pen.c: Fix a few typos in pen vertex math description.
Index: cairo_pen.c
===================================================================
RCS file: /cvs/cairo/cairo/src/cairo_pen.c,v
retrieving revision 1.18
retrieving revision 1.19
diff -u -d -r1.18 -r1.19
--- cairo_pen.c 12 Oct 2004 19:29:30 -0000 1.18
+++ cairo_pen.c 12 Oct 2004 21:09:37 -0000 1.19
@@ -231,7 +231,7 @@
Thus the maximum value is
- MAX[a*cos(t) + b*sin(t)] = (a*a + b*b)/sqrt(a^2 + b^2)
+ MAX[a*cos(t) + b*sin(t)] = (a^2 + b^2)/sqrt(a^2 + b^2)
= sqrt(a^2 + b^2)
@@ -253,7 +253,7 @@
Thus
r^2(t) = (a*cos(t) + b*sin(t))^2 + (c*cos(t) + d*sin(t))^2
- = (a^2 + c^2)*cos(t) + (b^2 + d^2)*sin(t)
+ = (a^2 + c^2)*cos^2(t) + (b^2 + d^2)*sin^2(t)
+ 2*(a*b + c*d)*cos(t)*sin(t)
Now apply the double angle formulae (A) to (C) from above:
@@ -333,7 +333,7 @@
Find the extremum by differentiation wrt t and setting that to zero
-â(E²)/â(t) = (1-cos(d))² (M² - m²) (-2 cos(t) sin(t))
+â(E²)/â(t) = (1-cos(â))² (M² - m²) (-2 cos(t) sin(t))
0 = 2 cos (t) sin (t)
0 = sin (2t)
More information about the cairo-commit
mailing list